Neutrinos may be the key to breaking the Standard Model

S&L: Discussion of matters pertaining to theoretical and applied sciences, and logical thought.

Moderator: Charon

Post Reply
User avatar
rhoenix
The Artist formerly known as Rhoenix
Posts: 7998
Joined: Fri Dec 22, 2006 4:01 pm
18
Location: "Here," for varying values of "here."
Contact:

#1 Neutrinos may be the key to breaking the Standard Model

Post by rhoenix »

arstechnica.com wrote:Some physicists are surprised that two relatively recent discoveries in their field have captured so much widespread attention: cosmic inflation, the ballooning expansion of the baby universe, and the Higgs boson, which endows other particles with mass. These are heady and interesting concepts, but, in one sense, what's new about them is downright boring.

These discoveries suggest that so far, our prevailing theories governing large and small—the Big Bang and the Standard Model of subatomic particles and forces—are accurate, good to go. But both cosmic inflation and the Higgs boson fall short of unifying these phenomena and explaining the deepest cosmic questions. “The Standard Model, as it stands, has no good explanation for why the Universe has anything in it at all,” says Mark Messier, physics professor at Indiana University and spokesman for an under-construction particle detector.

To go beyond the models we already have, beyond the confines of the Standard Model, we need some results that we don’t foresee. And when it comes to unexpected results, we expect them from one entity: neutrinos. These particles are abundant, ineffably light, and very weird, but they consistently deliver.

Ethereal as they are, neutrinos could make hefty changes to our understanding of the universe if physicists could answer four main questions: How does regular matter affect neutrinos? What causes neutrinos to have mass? Do antineutrinos live different lives from normal neutrinos? And even odder, are these ghostly particles their own antiparticles?

The Standard Model, which physicists have populated since the 1950s with quarks, leptons, and force-carrying particles, does not hold the answers. But major neutrino experiments in the US, Japan, and Europe are collecting data while undergoing expansion and construction, and they are gearing up to address these problems. These initiatives could not only unravel the mysteries of the ghostly particles, but the research might lead into larger questions about the nature of all things.

What’s the matter with neutrinos?

Neutrinos are the second most abundant particles in the Universe (after photons), but they carry no charge and are puny. Neutrinos are at least a million times lighter than an electron, though no experiment has been able to definitively measure their mass. They also barely interact with any matter. They are generated in distant supernovae and travel unhindered through the debris. Neutrinos zip through planets in a single bound without leaving a trace. Billions and billions of them are streaming from the Sun as you read this, blowing through your screen—and through you—without a care. They travel extremely close to the speed of light; so close, in fact, that a tiny error in an experiment designed to measure them was enough to make it appear that they were going faster than that in 2011.

But perhaps the neutrino's strangest property is that they don’t necessarily finish their travels with the same identity that they started it with.

In 1998, the 11,000 phototubes submerged in Japan’s Super-Kamiokande underground detector verified that neutrinos coming down through the atmosphere and up through the Earth had different ratios among their identities. Somewhere along their journey from the Sun, they changed type among their three flavors. This oscillation indicated they indeed had mass. If they didn’t, there wouldn’t be anything to switch between.

Finding out anything about these particles has been difficult because neutrinos are so notoriously hard to detect and to obtain. But there are now a few ways to do this. Experimenters can nab some from the Sun, like Super-K and many others do. Or they can situate detectors near nuclear reactors, which produce electron antineutrinos. The Daya Bay Reactor Neutrino Experiment in southern China listens to these particles. Finally, physicists can fire up particle accelerators and smash protons into bits of graphite, creating a neutrino spray in the process. The latter is the goal of forthcoming experiments like the Long Baseline Neutrino Experiment, under construction at Fermilab, and the Japanese Tokai to Kamioka experiment, which runs from the seaside town of Tokai to the Super-K detector. Manmade neutrinos are easier to lasso than their incidental brethren, but because of their quantum nature, detecting them is a probabilistic challenge.

“Every time we were able to measure a property of neutrinos, we were surprised by it,” says Patrick Huber, a neutrino theorist and associate physics professor at Virginia Tech.

Neutrino flavors—electron, muon, and tau—aren’t discrete individual particles, but combinations of the neutrinos’ different masses. These masses are related to the neutrinos’ energies, as Einstein taught us in E=mc². Although a neutrino can be produced with a specific energy, and thus specific flavor (the Sun makes a multitude of electron neutrinos, for example), the quantum state of these neutrinos is a mixture of all three that twists in time. “They are just inherently quantum mechanical. If I gave you an electron, and I ask you 10 minutes from now, ‘do you have an electron in your hand?’ the answer would be yes,” Messier says. “Neutrinos just break that.”

What are some of the things that they break? Though neutrinos have vanishingly small masses, regular matter can rub off on them, like a sourpuss spoiling the mood at a dinner party. Robert Wilson, physics professor at Colorado State University and spokesman for the Long-Baseline Neutrino Experiment (LBNE), likens neutrinos to light passing through a filter. Some wavelengths are affected while others aren’t. Similarly, certain neutrino flavors seem to be affected by regular matter as they zip by.

Last month, Japanese experimenters demonstrated this oscillation effect by finding that neutrinos shine more brightly at night. As electron neutrinos stream from the Sun toward Earth, they oscillate to muon and tau neutrinos. But as they pass through the dense matter of our planet, some of them switch back. This suggests some quantum-mechanical transformation is taking place as the neutrinos interact with matter in the Earth, specifically its electrons. The electron neutrinos can exchange a W boson, the carrier of the weak force, during this interaction, according to Messier.

“They are sort of kissing the electrons and moving on. This is a weak force interaction,” he says. “The W boson changes the phase of its wave without changing its momentum. That’s the possibility that introduces this matter effect.”

LBNE will take a hard look at these matter-related effects, which cause droplets of electron neutrinos to appear amid a shower of muon neutrinos. Fermilab’s accelerators will stream neutrinos 800 miles toward a liquid argon detector buried beneath South Dakota bedrock. The detector distances are in a sweet spot that should allow physicists to not only study matter effects, but to also search for clues as to why the Universe contains any matter for them to interact with in the first place.

That’s because this wee effect has important implications for the asymmetry between matter and antimatter, says Wilson. “It’s still the neutrino; it hasn’t changed in one sense. But the probability of what you will see when you make the measurement has changed, and it depends on how much mass it has gone through.”

And what of their own masses? The Standard Model can’t explain that either. Based on the variable buzz rate of neutrino masses, physicists have been able to tell that they’re different, although no one is sure how they stack up. We don't yet know which neutrino is heaviest, which is lightest. An upcoming detector called the NuMI Off-axis ve Appearance experiment, or NOvA, will help determine neutrino mass hierarchy. NuMI is a neutrino beam at Fermilab; NOvA’s 14,000-ton detector will look for a disparity between departing muon neutrinos and arriving electron neutrinos (ve).

Even if this experiment succeeds in generating new mass data, physicists won’t be able to say exactly how that mass arises. Because neutrinos are so much lighter than any other particle, the Higgs mechanism is unlikely to endow them with mass the way it does other particles, Messier says.

“There must be some mechanism that suppresses their masses,” Messier says. “And what are the masses? What pattern do they follow? What’s the pattern of that mixing? It’s launched a whole experimental program to pull apart that crack in the Standard Model.”

LBNE, NOvA, and other upcoming experiments will attempt to pull those cracks until the Standard Model shatters completely. From the debris, these research initiatives hope to build a new theory of physics.
TL;DR: physicists are hoping to use neutrinos to rewrite the Standard Model of Physics from the ground up, since neutrinos are basically the Standard Model's black eye.
"Before you diagnose yourself with depression or low self-esteem, make sure that you are not, in fact, just surrounded by assholes."

- William Gibson


Josh wrote:What? There's nothing weird about having a pet housefly. He smuggles cigarettes for me.
User avatar
General Havoc
Mr. Party-Killbot
Posts: 5245
Joined: Wed Aug 10, 2005 2:12 pm
19
Location: The City that is not Frisco
Contact:

#2 Re: Neutrinos may be the key to breaking the Standard Model

Post by General Havoc »

Articles like these are why I can't take anyone who claims that "Physics has proven the utter and permanent impossibility of _________" seriously at all.
Gaze upon my works, ye mighty, and despair...

Havoc: "So basically if you side against him, he summons Cthulu."
Hotfoot: "Yes, which is reasonable."
User avatar
Josh
Resident of the Kingdom of Eternal Cockjobbery
Posts: 8114
Joined: Mon Jun 06, 2005 4:51 pm
19
Location: Kingdom of Eternal Cockjobbery

#3 Re: Neutrinos may be the key to breaking the Standard Model

Post by Josh »

Anybody who makes a claim like that doesn't understand the scientific process. They just like using concrete statements to win arguments.
When the Frog God smiles, arm yourself.
"'Flammable' and 'inflammable' have the same meaning! This language is insane!"
GIVE ME COFFEE AND I WILL ALLOW YOU TO LIVE!- Frigid
"Ork 'as no automatic code o' survival. 'is partic'lar distinction from all udda livin' gits is tha necessity ta act inna face o' alternatives by means o' dakka."
I created the sound of madness, wrote the book on pain
User avatar
General Havoc
Mr. Party-Killbot
Posts: 5245
Joined: Wed Aug 10, 2005 2:12 pm
19
Location: The City that is not Frisco
Contact:

#4 Re: Neutrinos may be the key to breaking the Standard Model

Post by General Havoc »

Comes up a lot in regards to FTL.
Gaze upon my works, ye mighty, and despair...

Havoc: "So basically if you side against him, he summons Cthulu."
Hotfoot: "Yes, which is reasonable."
User avatar
Lys
Master
Posts: 1896
Joined: Wed May 25, 2011 7:37 pm
13

#5 Re: Neutrinos may be the key to breaking the Standard Model

Post by Lys »

Let me show you a magic trick. Here's an unreasonable statement that can't be taken seriously: "Physics has proven the utter and permanent impossibility of FTL travel."

Now through the ancient arts of vocabulary, I'm going to turn this into a reasonable statement! Just say the magic words... et voila: "Our present understanding of physics has proven the utter and permanent impossibility of FTL travel."

It's magic!

Ah, yes, but it's a sort of magic anyone can do at home, ladies and gentlemen. It's simplicity itself, all you have to do is take those four words focus on them clearly in your head, and then mentally apply them in front of every declarative statement about physics ever made. Like magic, they will suddenly go from unreasonably close minded to properly hedged in reasonable fact and understanding. Why, one could almost assume that those words are inherent to statements of a scientific nature, but surely that's not the case, this is magic after all.


[Disclaimer: Magic trick ineffective against statements of a false or idiotic nature, use only as directed, consult doctor if experiencing nausea, vomiting, or delusions of grandeur.]
Lys is lily, or lilium.
The pretty flowers remind me of a song of elves.
Post Reply